Generalized Chua's Circuit
$$\begin{eqnarray}
\frac{dx}{dt} &=& \alpha (y - h(x)) \\
\frac{dy}{dt} &=& x - y + z \\
\frac{dz}{dt} &=& -\beta y - \gamma z
\end{eqnarray}$$
$$\displaystyle h(x) = m_{2n - 1}x + \frac{1}{2}\sum_{k=1}^{2n-1}(m_{k-1} - m_k)(|x + b_k| - |x - b_k|)$$
For the 3-Double scroll attractor pictured:
$$\alpha=9, \beta=14.286, \gamma=0$$
$$m_0 = \frac{-1}{7}, m_1 = m_3 = m_5 = \frac{2}{7}, m_2 = m_4 = \frac{-4}{7}$$
$$b_1 = 1, b_2 = 2.15, b_3 = 3.6, b_4 = 8.2, b_5 = 13$$
|